If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8x^2-20x-33=0
a = 8; b = -20; c = -33;
Δ = b2-4ac
Δ = -202-4·8·(-33)
Δ = 1456
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1456}=\sqrt{16*91}=\sqrt{16}*\sqrt{91}=4\sqrt{91}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-20)-4\sqrt{91}}{2*8}=\frac{20-4\sqrt{91}}{16} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-20)+4\sqrt{91}}{2*8}=\frac{20+4\sqrt{91}}{16} $
| -5y+9=-4y | | 6*s+s=39 | | 9=8x-47 | | m+7=4m+4 | | 4.2v+.8v=54 | | 50=85x | | 3/7(u)=9 | | 11m-6=8m+9 | | (5+1/2)+0.6x=16 | | 14-x/2=3x-4/2 | | s+s+1/6=23 | | 6y+4=3y+1 | | 42=t/9=54 | | 2y-4=2y-8 | | x+5+2x=2x+ | | 4.2x+2025=17.64+45x | | Y=190x-40 | | (×+10)(x-3)=-12 | | -2=3x-2/4 | | 11c-23=143 | | 5=k/8-20 | | 29h+(-52)=64 | | 5+3(x+4)-6(x-13)-2(x+7)=5(x-9+4) | | 3g-479=430 | | 5x-6+3=18-(3+2x) | | 6n-13=2 | | w/3+4=6 | | 0.08y=3=3.8 | | 15x-30•0+40=89 | | -2x-3)+4=-5x+2(3x+5) | | 2=3e^2 | | r/17+(161)=-142 |